
1

Summary points from the final report of the
Committee on Advancing

Software-Intensive Systems

Producibility (ASISP)

William Scherlis, Chair

Enita Williams, Study Director

Jon Eisenberg, CSTB Director

December 2010

National Research Council (NRC)

Computer Science and Telecommunications Board (CSTB)

v03

Critical Code

Software Producibility
 for Defense

Mission goals Practice improvements Research

 Improve critical areas of current practice

– Enable incremental iterative development at arm’s length

 Process and measurement

– Enable architecture leadership, interlinking, flexibility

 Architecture

– Enable mission assurance at scale, with rich supply chains

 Assurance and security

 Undertake research to support the critical areas of practice
1. Architecture modeling and architectural analysis

2. Validation, verification, and analysis of design and code

3. Process support and economic models for assurance

4. Requirements

5. Language, modeling, code, and tools

6. Cyber-physical systems

7. Human-system interaction

One slide summary:

 Goals and Enablers

2

Key Findings and Recommendations

1. Software has become critical in its role and strategic significance for DoD

– Software enables capability, integration, and agility in defense systems

– DoD needs to actively and directly address its software producibility needs

– NITRD data reveal the extent of the S&T disengagement that must be reversed

2. Innovative software-intensive engineering can be managed more effectively

– Apply advanced practice and supporting tools for iterative incremental development

– Update earned-value models and practices to support management process

3. DoD needs to be a smarter software customer

– There is insufficient DoD-aligned software expertise within and around DoD

4. Assert DoD architectural leadership

– In highly complex systems with emphasis on quality attributes, architecture decisions
may need to dominate functional capability choices

5. Adopt a strategic approach to software-intensive mission assurance

– Integrate preventive practices into development to support ongoing creation of evidence
in support of assurance

– Do not lose leadership in software evaluation and assurance (DSB’07)

6. Reinvigorate and focus DoD software engineering research

– Apply appropriate criteria in identifying goals for research programs

– Focus research effort on identified goals in seven technical areas

One slide summary:

 Recommendations

Adopt a strategic approach to software assurance

 Finding from DSB2007, reiterated in Critical Code

– It is an essential requirement that the United States maintain advanced
capability for ―test and evaluation‖ of IT products. Reputation-based or trust-
based credentialing of software (―provenance‖) needs to be augmented by
direct, artifact-focused means to support acceptance evaluation.

 Context

– Challenges

 Inadequate + costly legacy approaches – based on inspection and sampled tests

 Newly rich and globally diverse supply chains, with arms-length relationships

 Assurance reqts can dramatically limit systems capability, and vice-versa

– Opportunities

 Significant advances and potential for preventive/evaluative practices

– Evidence production – Isolation / encapsulation

– Architecture design – Configuration management

 Potential for new approaches to ―evaluation standards‖ for legacy / ongoing / new

 Conclusion

– DoD must directly foster advanced software practice and tools for highly
assured high capability systems -- nobody is doing this for DoD

One slide summary:

 Assurance

3

5

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

– Process and measurement

– Software expertise

– Architecture

– Assurance and security

 Topics of research

 Economic argument

 Next steps

6

The ASISP committee of the NRC

 National Research Council (NRC) ASISP Committee

– ASISP: Advancing Software-Intensive Systems Producibility

– Producibility: the capacity to design, produce, assure, and evolve
software-intensive systems in a predictable manner while effectively
managing risk, cost, schedule, quality, and complexity.

 Commissioned by the Office of the Secretary of Defense (OSD)

– DDR&E focal point, with ONR support and NSF assistance

 NRC charge to committee

– Assess national investment in relevant software research

– Recommend improvements to DoD software practice

– Examine needs relating to DoD software research

– Assess research requirements relating to software producibility

4

7

ASISP study committee

 William Scherlis, Carnegie Mellon University, Chair

 Robert Behler, The MITRE Corporation

 Barry W. Boehm, University of Southern California

 Lori Clarke, University of Massachusetts at Amherst

 Michael Cusumano, Massachusetts Institute of Technology

 Mary Ann Davidson, Oracle Corporation

 Larry Druffel, Software Engineering Institute

 Russell Frew, Lockheed Martin

 James Larus, Microsoft Corporation

 Greg Morrisett, Harvard University

 Walker Royce, IBM

 Doug C. Schmidt, Vanderbilt University

 John P. Stenbit, Independent Consultant

 Kevin J. Sullivan, University of Virginia

 CSTB Staff

 Enita Williams, Study Director

 Jon Eisenberg, CSTB Director

 Thanks also to: Joan Winston, Lynette Millett, Morgan Motto, Eric Whitaker

– Industry integrators

 Software vendors

 Defense primes

– Government

 Government experience

 FFDRC advisors

– Research

 Academia

 Industry

8

Reviewers of the ASISP reports

 Rick Buskens, Lockheed Martin ATL (final)

 Grady Campbell, Software Engineering Institute (final)

 William Campbell, BAE Systems (final)

 John Gilligan, Gilligan Group (letter, final)

 William Griswold, University of California, San Diego (final)

 Anita Jones, University of Virginia (letter, final)

 Annette Krygiel, Independent Consultant (final)

 Butler Lampson, Microsoft Corporation (letter)

 Steve Lipner, Microsoft, Inc. (final)

 David Notkin, University of Washington (workshop, letter, final)

 Frank Perry, SAIC (final)

 William Press, U Texas Austin (final review monitor)

 Harry D. Raduege, Jr., Deloitte Center for Network Innovation (letter)

 Alfred Z. Spector, Google, Inc. (workshop, letter, final)

 Daniel C. Sturman, Google, Inc. (final)

 John Swainson, CA, Inc. (final)

 Mark N. Wegman, IBM (final)

 John Vu, Boeing Corporation (workshop)

 Peter Weinberger, Google, Inc. (workshop)

 Jeannette Wing, Carnegie Mellon University (workshop)

5

9

HCSS (High Confidence Software and Systems)

DSB2007: It is an essential requirement that

the United States maintain advanced

capability for “test and evaluation” of IT

products. Reputation-based or trust-based

credentialing of software (―provenance‖) needs

to be augmented by direct, artifact-focused

means to support acceptance evaluation.

SDP (Software Design and Productivity)

10

PITAC 1999:

Finding: The Nation is underinvesting in

fundamental software research.

Recommendation: Make fundamental software

research one of the Nation's highest R&D

priorities.

6

11

Total NITRD investment (“prior year” amounts)

NIH funding not included in this analysis

SDP+HCSS relative to total NITRD

12

Percentage for software research
(SDP and HCSS areas)

A 45% reduction

in constant dollars

for SDP and HCSS

7

13

Deliberation and challenges – Software Myths

 Long-standing incorrect folklore regarding defense software
producibility (digested from the report)

1. DoD software producibility challenges are predominantly challenges
of management and process but not of technology.

2. DoD and contractors can rely on industry to innovate at a rate fast
enough to solve the DoD’s hard technical problems and to stay
ahead of its adversaries.
Regardless, there is sufficient software research already
underway through NSF and other sponsors.

3. Software technology is approaching a plateau, which diminishes
the need to invest in technology innovation.

14

Deliberation and challenges – Software Myths

 Long-standing incorrect folklore regarding defense software
producibility (digested from the report)

4. We will never create perfectly reliable and secure software, so we
should focus primarily on provenance—trusted sources—rather than
attempting to achieve assurance directly.

5. Earned value management approaches based on
code accumulation are a sufficient basis for managing software
development programs, including incremental iterative development.

8

15

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

– Process and measurement

– Software expertise

– Architecture

– Assurance and security

 Topics of research

 Economic argument

 Next steps

Chapter 2 of the report

Incremental and iterative software dev’t practices

 Findings

– Modern processes for innovative software systems is geared toward
incremental identification and mitigation of engineering
uncertainties.

 In other words: Innovative engineering does not necessarily
increase programmatic risk

 For defense software, challenges derive from (2) larger scale, (2) linking
with systems engineering, and (3) arm’s-length contractor relationships.

– Technology and improved measurement have significant roles in
enabling modern incremental and iterative software development
practices at all levels of scale.

 Extensions to earned value management models are needed to
enable incremental iterative development.

– These include evidence of feasibility and time-certain development.

– Additionally, supplement the prescription of DoDI 5000.02 to better support
ongoing management of engineering risks

9

Incremental and iterative software dev’t practices

 Engineering risk can be decoupled from programmatic risk

– Iterative engineering of innovative software can be successfully
managed

 Recommendations

– Take aggressive actions to identify and remove barriers to the
broader adoption of incremental development methods.

 These include iterative approaches, staged acquisition, evidence-based
systems and software engineering, and related methods that involve
explicit acknowledgment and mitigation of engineering risk.

– The DoD should take steps to accumulate high-quality data
regarding project management experience and technology choices.

 This data can be used to inform cost estimation models, particularly as
they apply to innovative software development.

There is insufficient DoD-aligned software expertise

 Finding

– The DoD has a growing need for software expertise

– It is not able to meet this need through intrinsic DoD resources.

 Nor is it able to fully outsource this requirement to DoD primes.

 The DoD needs to be a smart software customer

– Particularly for large-scale innovative software-intensive projects.

10

19

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

– Process and measurement

– Software expertise

– Architecture

– Assurance and security

 Topics of research

 Economic argument

 Next steps

Chapter 3 of the report

20

Assert architecture leadership

 DoD needs to play an active role in software architecture.

– Software architecture

 Definition: The structure or structures of the system, which comprise
software components, the externally visible properties of those
components, and the relationships among them.

 Good architecture entails a minimum of engineering commitment that
yields a maximum value.

 Architecture design is an engineering acitvity that is separate from
ecosystems certification and other standards-related policy setting

 For complex innovative systems:

– Architecture embodies planning for flexibility—defining and
encapsulating areas where innovation and change are anticipated.

– Architecture most strongly influences quality attributes

– Architecture embodies planning for product lines and interlinking
of systems

continued…

11

21

Assert architecture leadership

– For innovative systems

– Consideration of architecture and quality attributes may best
precede commitment to specific functionality.

– This approach can reduce the overall uncertainty of the engineering
process and yield better outcomes.

– Architecture includes the earliest and often most important design
decisions – those that are most difficult to change later

– Architecture is profoundly influenced by precedent

 Small changes can open and close opportunities to exploit rich
ecosystems, greatly influencing cost, risk, and supply chain structure

 Findings

– An early focus on architecture is essential for systems with
innovative functional or quality requirements.

– Architecture practice, as seen in industry, is sufficiently mature
for DoD to adopt (Finding3-2)

continued…

Assert architecture leadership

 Recommendations (Rec3-2,3-3)

– Follow architecture-driven acquisition strategies
 Use as basis for product-line and for systems with multiple leads

 Use architecture to encapsulate innovative elements

 Use architecture to maximize opportunity to build on existing
ecosystems

 Support early and continuous validation of architectural decisions

12

23

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

– Process and measurement

– Software expertise

– Architecture

– Assurance and security

 Topics of research

 Economic argument

 Next steps

Chapter 4 of the report

Adopt a strategic approach to software assurance

 Current technical approaches to software assurance are
inadequate.

– Assurance

 A human judgment regarding reliability, safety, security, etc.

– Current technical approaches need to be augmented

 Costs range from 30-50% for typical major projects

 Testing and inspection techniques are inadequate for modern software devt

 Assurance conclusions are difficult to draw.

– Not analogous to reliability models for physical systems

– Cannot be achieved entirely through post hoc acceptance evaluation

 Quality and security are built in, not ―tested in‖

13

Adopt a strategic approach to software assurance

 DoD faces particular challenges to assurance.

1. The arms-length relationship between a contractor development team and
government stakeholders

2. Modern systems of all kinds draw on components from diverse sources

 This implies that supply-chain attacks must be contemplated, along with attack
surfaces within the software application

– There will necessarily be differences in the levels of trust conferred on components.

– There may also be opacity in the supply chain for vendor and sub components

 Evaluative and preventive approaches can be integrated to enhance assurance
in complex supply chains with diverse sourcing.

3. High consequences due to roles in war-fighting and protection of human
lives and national assets

4. Failure to maintain a lead in the ability to prevent and evaluate confers
advantage to adversaries (DSB2007, paraphrased)

Assurance: models, process, and traceability

 Finding

– Assurance is facilitated by advances in diverse aspects of
software engineering practice and technology.

 These include modeling, analysis, tools and environments, traceability,
programming languages, and process support.

 After many years of slow progress, recent advances have enabled
more rapid improvement in assurance-related techniques and tools

 Advances focused on simultaneous creation of assurance-related
evidence with ongoing development effort have high potential to
improve the overall assurance of systems.

 Finding from DSB2007

– It is an essential requirement that the United States maintain
advanced capability for ―test and evaluation‖ of IT products.
Reputation-based or trust-based credentialing of software
(―provenance‖) needs to be augmented by direct, artifact-focused
means to support acceptance evaluation.

14

Assurance: models, process, and traceability

 Traceability: Assurance best practice for development

– Connect code to be executed with functional and quality attributes

 Create and sustain chains of evidence that link software-related
artifacts

– Examples: test cases, inspection reports, analysis, simulation, models, etc.

 Employ a mix of preventive and evaluative approaches

 Address assurance considerations throughout the process lifecycle

 Attend to the means by which design-related information and traceability
links are represented

– Formality, modeling, consistency, and usability

 Finding

– Early engineering choices strongly influence feasibility of achieving
high assurance.

 Successful approaches involve a diverse set of evaluative and
preventive techniques

 Particularly architecture, modeling, tooling

Assurance concepts in the report – examples

 Scenario structure – combine evaluation and prevention
1. Hazard and requirements analysis

2. Architecture and component identification

3. Component-level error and failure modeling

4. Supply-chain and development history appraisal

5. Analysis of architecture and component models

6. Identify high-interest components

7. Develop a component evaluation plan

8. Assess individual components

9. Select courses of action for custom components

10. Select courses of action for opaque components
 and services

11. Refine system-level assessment

 Two additional security-related challenges
– Separation

 E.g., red / green and finer grained

 Isolation and sandboxing

– Configuration

 Including issues related to dynamism

Preventive
– Requirements analysis
– Architecture design
– Ecosystem choice
– Detail design
– Specification and

documentation
– Modeling and simulation
– Coding
– Programming language
– Tooling

Evaluative
– Inspection
– Testing
– Direct analysis
– Measurement
– Monitoring
– Verification

15

Engineering choices influence ability to assure

 Recommendations

– Institute effective incentives for preventive software assurance
practices and production of evidence across the lifecycle.

 Do this throughout the supply chain

 Examine commercial best practices for transitioning assurance-
related best practices into development projects (Rec4-3)

 Including contracted custom development, supply-chain practice, and
in-house development practice.

– Expand research/investment focus on assurance-related software
engineering technologies and practices (Rec4-2)

Supplementary

Material

v03

Critical Code

Software Producibility
 for Defense

16

31

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

 Topics of research

– Seven technology areas

– Four considerations

– Reinvigoration plan

 Economic argument

 Next steps

Chapter 5 of the report

Reinvigorate DoD software engineering research

 Focus research effort in seven technology areas that directly enable
producibility improvements
1. Architecture modeling and architectural analysis

Goals:

 (1) Early validation for architecture decisions

 (2) Architecture-aware systems management
– Including: Rich supply chains, ecosystems, and infrastructure

 (3) Component-based development
– Including: Architectural designs for particular domains.

2. Validation, verification, and analysis of design and code
Goals:

 (1) Effective evaluation for critical quality attributes

 (2) Components in large heterogeneous systems

 (3) Preventive methods to achieve assurance
– Including: Process improvement, architectural building blocks,

programming languages, coding practice, etc.

3. Process support and economic models for assurance
Goals:

 (1) Enhanced process support for assured software development

 (2) Models for evidence production in software supply chains

 (3) Application of economic principles to process decision-making

continued…

17

Reinvigorate DoD software engineering research

 Focus research effort in seven technology areas that directly enable
producibility improvements

4. Requirements

Goals:

 (1) Expressive models, supporting tools for functional and quality attributes

 (2) Improved support for traceability and early validation

5. Language, modeling, coding, and tools

Goals:

 (1) Expressive programming languages for emerging challenges

 (2) Exploit modern concurrency: shared-memory and scalable distributed

 (3) Developer productivity for new development and evolution

6. Cyber-physical systems

Goals:

 (1) New conventional architectures for control systems

 (2) Improved architectures for embedded applications

7. Human-system interaction

Goal:

 (1) Engineering practices for systems in which humans play critical roles

(This area is elaborated in another NRC report)

Considerations in identifying research topic areas

(1) Significant potential value for DoD software producibility
– Process and measurement, architecture, and assurance

(chapters 2, 3, 4)

(2) Feasible progress in a well-managed research program
– Well-managed with respect to ―Heilmeier Questions‖ (Box5.1)

 For the identified ―Goals‖ within the seven areas

– There is past success in software research
 This is now well documented (Box5.2)

(3) Not addressed sufficiently by other federal agencies
– Primarily other NITRD-coordinated agencies

(4) Might not otherwise develop at a sufficient pace
– In industry or through research sponsored elsewhere

18

Reinvigorate DoD software engineering research

 Technology role (Finding5-2)

– Technology has a significant role in enabling modern
incremental and iterative software development practices

 At levels of scale ranging from small teams to large distributed
development organizations.

 In all three areas: Process and measurement, architecture, assurance

 Myth: DoD’s producibility challenges are predominantly challenges of
management and process, not technology (M1)

 Recommendations (Rec5-1,2)

– DoD take immediate action to reinvigorate its investment in
software producibility research

 Undertake through diverse research programs throughout DoD

 Include academia, industry labs, and collaborations

– Undertake research programs in the seven areas, as critical to
advancement of defense software producibility

continued…

Reinvigorate DoD software engineering research

 The research operating environment: challenges and success influences

1. Software engineering is maturing as a research discipline.

 Improved research methods and lower risk in technology transition

 Facilitating more satisfactory responses to the Heilmeier Questions

2. Diffusion pathways are complex, and there is variability of timescale.

 Some results can readily transfer to DoD practice

 Others, often most significant, take longer and are more indirect – raise all ships

3. Novelty is often more about timeliness.

 Readiness (infrastructure, exponentials) rather than technical novelty

 What are the ideas whose time has come? (E.g., thin/rich clients; utility & cloud)

4. We can accept non-quantitative means to assess progress.

 Often focus of research is on developing such measures

 Example: how to assess the benefits of strong typing? In a quantitative way?

 Context:

– There is a broad challenge in assessing ROI for basic science and for
research related to enabling technologies.

 NRC reports address this difficulty for computing technology and software

19

Roles for academia and industry in research

 Recommendation
– Academic, industry, and government researchers must all

participate (Rec5-1)

 Understand the scope of value of academic research
– Workforce

 University graduates – prepared for emerging new challenges

 Next generation technical leadership – from PhD programs

– New knowledge
 Industry labs under greater ROI pressure

 Game changing and disruptive technologies
– Ongoing disruption characteristic of the first 50 years of IT innovation

– Non-appropriable invention, as well as appropriable invention
 Raise all boats

– Surprise reduction
 Very rapid change in computing technology, at undiminished pace

 ―Surprise‖ can include rapid shifts of innovation center of gravity

38

Outline

 Task and prior reports

 Committee, process, background

 Areas of practice

 Topics of research

 Economic argument

– Software has a critical role for DoD

 DoD must take action to address its needs

 DoD must maintain innovation leadership

 Innovation leadership requires sustained R&D

 Software technology is not at a plateau

 Next steps
Chapter 1 of the report

20

Broadening role of software in DoD, with benefits

 Software has emerged as a key enabler of capability, flexibility, and
integration in diverse DoD systems

– Mission capability embodied in software has become a unique source of
strategic and military advantage

– Extent of system function performed in software, examples (DSB)

– Multiple DSB, NRC studies:

 At the core of the ability to achieve integration
and maintain mission agility is the ability of the
DoD to produce and evolve software

 Finding

– Software has become essential to a vast
range of military system capabilities and
operations, and its role is deepening and
broadening (1-1)

 Increase in scale, complexity, and role in
manifesting functional capability

 Increase in interlinking diverse system elements

 Increase in use for systems development,
modeling and simulation

The strategic significance of software US and globally

 Software has become a principal force multiplier for DoD

– Rapid growth in extent and criticality of software to DoD operations

 Software is a key competitive factor in commercial business

– Software is now a strategic source of competitive advantage in
sectors ranging from financial services and health care to telecom
and entertainment.

 Disproportionate benefits from software in economic growth

– ICT industries in US since 1995 [NRC economic policy board]

 ICT sector is 3% of US GDP

 ICT drives 20% of US economic growth

– ICT in Europe

 ICT sector is 5% European GDP

 ICT drives 25% of overall growth and 40% of the productivity increase

– And: Most software development is outside the ICT sector
40

Software’s critical role

21

Risks come with the benefits, 1 (Findings1-1,1-2)

 The growing role of software in systems and organizations is

creating both benefits and risks.

– Benefit: Interlinking of systems

 Risks for DoD: Magnitude of failures, cascading failures, security

challenges

– Benefit: Direct interaction by users

 Risks for DoD: More individuals can take actions with high consequence

– Benefit: Immediate enactment

 Risks for DoD: Failures and compromises can occur inside human

decision loops

– Benefit: Rapid growth in capability and flexibility

 Risks for DoD: Early validation for architecture must be emphasized in

the process

 Risks for DoD: Assurance practices and tools need to advance

commensurably

Risks come with the benefits, 2 (Finding1-1,1-2)

 Software supply chains are increasing complex and diverse.
– Benefit: Diversification and enrichment of supply-chain

structure and geography
 Risks for DoD: Supply-chain attacks, over-reaction (provenance,

ecosystems denial)

 Enabled by advances in software componentization technology

 Architectures, frameworks/ecosystems, libraries, and services

 Technology improvements have enabled modularization and rapid
development

 Risks for DoD: Broad component interfaces, complex rules of
engagement, assurance

– Benefit: Rich variety of generally accepted software ecosystems
 Ecosystem: conventional structure of infrastructural elements and

services that are intended to be combined in a patterned way.
– Examples: Web services stacks, iPhone, Android, OLAP, LAMP stack,

AUTOSAR, SCADA, ERP/SCM/CRM, network hourglasses

 Risks for DoD: security and supply chains, externalities and adoption,
compliance practices

22

DoD software leadership

 Software capability is strategic

– At the core of the ability to achieve integration and maintain
mission agility is the ability of the DoD to produce and evolve
software.
(Multiple DSB, NRC studies)

 Findings (Findings1-1,4)

– Software has become essential to a vast range of military system
capabilities and operations, and its role is continuing to deepen and
broaden, including interlinking diverse system elements.

– The DoD’s needs will not be sufficiently met through a
combination of demand-pull from the military and technology-push
from the defense or commercial IT sectors.

– The DoD cannot rely on industry alone to address the long-term
software challenges particular to defense.

The role for DoD in its software leadership

 Findings

 Technological leadership in software is a key driver of
capability leadership in systems.

 DoD relies on US industry to sustain this technological leadership.

 The DoD relies fundamentally on mainstream commercial
components, supply chains, and software ecosystems.

 Nonetheless, the DoD has special needs in its mission systems driven
by the growing role of software in systems.

 Recommendations (Rec1-1,5-1)

– DDR&E should regularly undertake an identification of areas of
technological need related to software producibility where the DoD
has “leading demand” and where accelerated progress is needed

– DoD take immediate action to reinvigorate its investment in
software producibility research

 Undertake research programs in the seven areas (Rec5-2,recap)

23

At a plateau?

 The myth of the plateau
– We are not at a plateau or near a plateau in overall software

capability or technology for software producibility (Finding1-5a)

―Automatic programming‖ – 1958 (Fortran), 1980s (4GLs), 1980s (AI), etc.

– Software has intrinsic unboundedness
 It lack of natural physical limits on scale and complexity

– Only human intellectual limits and mathematical limits on algorithms

 New software-manifest capabilities continue to emerge
– A ―continuous improvement‖ in capability (as distinct from process)

– Less fine tuning and more order-of-magnitude leaps

 Enabled by a steady pace of technological breakthroughs in practices,
models, languages, tools, and practices

– Leveraged through ecosystems and infrastructure

– There is a consequence necessity of ongoing innovation in software
 Software innovation, once routinized, is then quickly automated

 Expensive custom dev’t gives way to low-cost component procurement

Consequences of unboundedness

 Software engineering and other engineering

– A relatively much larger portion of overall software engineering

effort is creating innovative functionalities, as compared with

other engineering disciplines

– Hence an ongoing focus on engineering risk

 Staying apace

– Mere presence as a software user requires keeping pace with

rapid ongoing innovation and improvement to practices

 Applies to custom development, components, and ecosystems

– Leadership as software producer or consumer requires more

 An active organizational role in defining the architecture of systems and

influencing ecosystems

 Participation in technology development

24

The consequent necessity of ongoing software innovation

 Findings (1-3b,5b)

– To avoid loss of leadership, DoD must be more fully engaged in
the innovative processes related to software producibility

 There is strategic value to DoD in sustaining US leadership in software
producibility -- compared with other industries that have moved offshore

– It is an essential requirement that the United States maintain
advanced capability for “test and evaluation” of IT products.
Reputation-based or trust-based credentialing of software
(―provenance‖) needs to be augmented by direct, artifact-focused
means to support acceptance evaluation. (DSB2007)

– DoD needs to address directly the challenge of building on and,
where appropriate, contributing to the development of mainstream
software that can contribute to its mission.

Final report of the

Committee on Advancing

Software-Intensive Systems

Producibility (ASISP)

William Scherlis, Chair

Enita Williams, Study Director

Jon Eisenberg, CSTB Director

December 2010

National Research Council (NRC)

Computer Science and Telecommunications Board (CSTB)

v03

Pre-release report to sponsors

DoD Software

Needs and Priorities

